Intrafractional dose variation and beam configuration in carbon ion radiotherapy for esophageal cancer

نویسندگان

  • M. F. Haefner
  • F. Sterzing
  • D. Krug
  • S. A. Koerber
  • O. Jaekel
  • J. Debus
  • M. M. Haertig
چکیده

BACKGROUND In carbon ion radiotherapy (CIR) for esophageal cancer, organ and target motion is a major challenge for treatment planning due to potential range deviations. This study intends to analyze the impact of intrafractional variations on dosimetric parameters and to identify favourable settings for robust treatment plans. METHODS We contoured esophageal boost volumes in different organ localizations for four patients and calculated CIR-plans with 13 different beam geometries on a free-breathing CT. Forward calculation of these plans was performed on 4D-CT datasets representing seven different phases of the breathing cycle. Plan quality was assessed for each patient and beam configuration. RESULTS Target volume coverage was adequate for all settings in the baseline CIR-plans (V95 > 98% for two-beam geometries, > 94% for one-beam geometries), but reduced on 4D-CT plans (V95 range 50-95%). Sparing of the organs at risk (OAR) was adequate, but range deviations during the breathing cycle partly caused critical, maximum doses to spinal cord up to 3.5x higher than expected. There was at least one beam configuration for each patient with appropriate plan quality. CONCLUSIONS Despite intrafractional motion, CIR for esophageal cancer is possible with robust treatment plans when an individually optimized beam setup is selected depending on tumor size and localization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code

Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide.   Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...

متن کامل

An Update of Couch Effect on the Attenuation of Megavoltage Radiotherapy Beam and the Variation of Absorbed Dose in the Build-up Region

Purpose: Fiber carbon is the most common material used in treating couch as it causes less beam attenuation than other materials. Beam attenuation replaces build-up region, reduces skin-sparing effect and causes target volume under dosage. In this study, we aimed to evaluate beam attenuation and variation of build-up region in 550 TxT radiotherapy couch.Materials and Methods: In this study, we ...

متن کامل

Monte Carlo computation of dose deposited by carbon ions in radiation therapy

Background: High-velocity carbon ion beams represent the most advanced tool for radiotherapy of deep-seated tumors. Currently, the superiority of carbon ion therapy is more prominent on lung cancer or hepatomas. Materials and Methods: The data for lateral straggling and projected range of monoenergetic 290 MeV/u (3.48 GeV) carbon ions in muscle tissue were obtained from the stopping and range o...

متن کامل

Calculation and Comparison of Heart Integral Dose in The Treatment of Esophagus Cancer with Three Photon Energies & Using CT Simulation and Treatment Planning System

Introduction: Esophageal cancer is one of the most frequently occurring cancers in Iran and having a  high  incidence  rate  among  other  countries.  Radiotherapy  is  one  of  the  three  methods  (surgery,  radiotherapy and chemotherapy) for radical or palliative treatment of esophageal cancer. In this method  of treatment, the organs such as heart and spinal cord are regarded as organs at r...

متن کامل

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016